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Abstract. A model for hydrogen-bonded solvents or molecules with hydrophobic and 
hydrophilic ends is considered in which the bonds of a square or cubic lattice are completely 
occupied by molecules with two chemically different types of ends. These molecules are 
represented by arrows. Molecules on neighbouring bonds exhibit angle dependent head-to- 
tail interactions. The resulting vertex model can be transformed into an Ising model on a 
line graph. A method due to Heilmann is used to prove that certain regions of parameter 
space are free of phase transitions. Reflection positivity and the Peierls argument are used 
to prove the existence of phase transitions in other regions of parameter space. 

1. Introduction 

We consider a square lattice A = { (a ,  b ) :  a, b = 0, . . . , M - 1) with periodic boundary 
conditions and assume that each of its bonds is covered by a ‘linear’ asymmetric 
molecule with two different chemically active ends. If the molecules are represented 
as arrows, and if only neighbouring molecules interact, then the model is equivalent 
to the 16-vertex model (Lieb and Wu 1972). (We also consider a three-dimensional 
version of the model on the simple cubic lattice). 

If we allow only ‘head-to-tail’ interactions between neighbouring molecules, the 
model can perhaps be used to study a hydrogen-bonded solvent or a system of molecules 
each of which contains both a hydrophobic and a hydrophilic end. Since interaction 
energies between such molecules are angle-dependent, we will assume the interaction 
energy between two neighboring molecules in our model is -I’ if the molecules are 
parallel and - I  if they are perpendicular. 

Table 1 lists the four different vertex energies which can occur in this two- 
dimensional 16-vertex model, and table 2 lists the six different vertex energies which 

Table 1. The four different vertex energies possible in the two-dimensional model with 
angle-dependent, head-to-tail interactions. 

e, = -2 I - 2 I ’  
eb = 0 
e, = -41 
ed = -21  - I ’  
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Table 2. The six different vertex energies possible in the three-dimensional model with 
angle-dependent, head-to-tail interactions. 

e,=-61-31’ 
eg = 0 
e,, = -81 
e, = - 8 1  - I ’  
e, = -41 - I ’  
e, = -61 - 2 1 ’  

can occur in the corresponding three-dimensional 64-vertex model. Using the number- 
ing convention of Lieb and Wu (1972) for the configurations of the two-dimensional 
16-vertex model, we find that configurations 1-4 have energy e,, configurations 5 and 
6 have energy e, configurations 7 and 8 have energy eh and configurations 9-16 have 
energy ed.  

In two dimensions it is straightforward to show that the ground states are composed 
of configurations having vertex energies equal to 

e, if Z’>111, 

eb if Z ’ < l I l ,  I < O ,  
e, if I ’< 111, I > 0. 

In three dimensions the ground states are composed of configurations having vertex 
energies equal to 

ef if I’ > max {I, - 2 1 )  

eB if I < min (0, - I ’ / 2 } ,  

eh if I > O ,  I’<O, 

ei if O<I’<Z.  

The regions of the (I, Z’, T = 0) plane corresponding to different ground states are 
illustrated for the two-dimensional model in figure 1 and for the three-dimensional 
model in figure 2 .  

In § 2 we shall use an argument due to Heilmann (1971) to show that the grand 
partition function is free of zeros in two dimensions if I’> 111 and in three dimensions 
if I ’> I > 0. In particular, if the model is used to model hydrogen-bonded solvents, 
for which I and I’ are both positive, then there is no phase transition so long as a 
bond between parallel molecules is stronger than a bond between perpendicular 
molecules. 

The ground state of our model is two-fold dengerate in regions in which the ground 
state is composed of vertices with energy eb or e,  in two-dimensions or is composed 
of vertices with energy eg in three dimensions. Other regions have highly degenerate 
ground states. 

In § 3 we use reflection positivity combined with the Peierls argument (Frohlich et 
al 1980) to prove the existence of multiple equilibrium states in the model at sufficiently 
low temperature for regions of (1, Z’, T )  space with a corresponding ground state 
which is two-fold degenerate. This indicates the existence of an order-disorder phase 
transition in the model for such a range of the parameters I and 1’. In particular, if 
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Figure 1. Regions of the ( I ,  1’, T =  0) plane which correspond to different ground states 
in the two-dimensional model. 

Figure 2. Regions of the ( I ,  1’, T = 0) plane which correspond to different ground states 
in the three-dimensional model. 

the model is used to model the cooperative effects of repulsive hydrophobic-hydrophilic 
interactions, then there is an order-disorder transition in the model. In the ordered 
phase, each site of one sublattice of A is surrounded by only hyrophobic ends of 
molecules, the sites of the other sublattice being surrounded by only hydrophilic ends 
of molecules. 

2. Transition-free regions of ( I ,  Z’, T )  space 

Consider the lattice A’ with sites at the midpoints of the bonds of A and with bonds 
between sites if molecules on the sites could interact. A‘ then forms a line graph 
(Heilmann 1971). A portion of A‘ for the two-dimensional case is illustrated in 
figure 3. 

The square and simple cubic lattices A can each be considered to be composed of 
two sublattices, a and j3, such that every bond of A connects a site of the a sublattice 
with a site of the j3 sublattice. If an arrow on a bond of A points away from (toward) 
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Figure 3. A portion of the lattice A' for the two-dimensional model. 

a site of the a sublattice of A, we shall associate a spin variable cri = + l  (ai = - 1 ) with 
the site i E A '  which is at the midpoint of the bond of A. The Hamiltonian for our 
model can then be written as 

H = - Z C '  1/2(1-aIa,)-I' E' 1 /2 (1  -ala,). 
N N  N N N  

Here the first sum is over the first-neighbour bonds of A', and the second sum is over 
the second-neighbour bonds of A'. Thus, except for a constant term, our model is 
equivalent to a spin-; Ising model on .A' with coupling constants $ I  on first-neighbour 
bonds and fZ' on second-neighbour bonds. 

Heilmann (1971) examined the distribution of zeros of the partition functions of 
antiferromagnetic Ising models on line graphs. As an example of an extension of his 
theorem 3, he considers the two-dimensional Ising model on A' with Hamiltonian 
given by equation (1 )  above. He proves the model has no transition if I ' >  I > 0. 

His induction argument for this case follows his method of proving theorem 3, but 
first raises (0+ I * )  the edge weights of each two-site complete graph connecting second 
neighbours of A', then raises the edge weights (0+ I )  of the four-site complete graphs. 
The result is to prove that an Ising model on A', with first-neighbour couplings equal 
to 1 > 0 and second-neighbour couplings equal to I '  = 1 + I *  > Z, has no phase transition. 

Precisely the same method can be used to prove our three-dimensional model has 
no transition if I ' >  Z > 0. Hence there is no transition in our model for hydrogen 
bonded solvents so long as the bond between parallel molecules is stronger than the 
bond between perpendicular molecules. 

For the two-dimensional case, flipping all vertical spins changes the sign of the N N  

term in equation ( 1 )  but leaves the N N N  term unaffected. Hence the partition function 
is an even function of I. There is therefore no transition in the two-dimensional model 
for I ' >  lZ I .  

3. Reflection positivity and the Peierls argument 

Brascamp er a1 (1973) have proved the existence of a phase transition in the general 
16-vertex model for the case when configurations 5 and 6 are dominant. These 
configurations in our model have energy e,. Their result, combined with the fact that 
the partition function for the two-dimensional version of our model is an even function 
of Z, is sufficient to prove the existence of a transition in the model so long as the 
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ground state is composed of configurations in which every vertex has energy eb or 
every vertex has energy e,  Using reflection positivity, we shall give an alternative 
proof of their result which does not use the fact that the partition function is an even 
function of I and which is easily extended to the three-dimensional version of our 
model. 

Reflection positivity combined with the Peierls argument (Frohlich et a1 1980) can 
be used to prove the existence of multiple equilibrium states at sufficiently low 
temperature for cases in which the ground state is two-fold degenerate. Stilck (1983) 
has recently applied this method to a class of 16-vertex models. Here we shall use an 
argument which is essentially the same as presented by Huckaby and Kowalski (1984). 
We outline the argument here for the two-dimensional case. The three-dimensional 
case proceeds in a similar fashion. 

We consider the model defined on the lattice A, but with Ising spins on the bond 
midpoints. The Hamiltonian is then given by equation (1). 

We define reflection lines RZ for 0 4  a 4 M - 1 as R ,  = { ( a  + 1/2, y ) :  y E R} and 
R,' = R ; + M .  There is a natural involution 8, : (x, y )  + (2a + 1 - x, y )  which reflects the 
coordinates through the reflection lines R:. The Hamiltonian can be written as 
H =  H,'+O,H,', where H,' is the Hamiltonian restricted to the region A,'= 
{(x, y ) :  M + a  +is x s 2 M  + a  +f,  y E R} and 8,H: is the Hamiltonian on A,' after the 
spins at the bond midpoints have been reflected by 8,. As a consequence, the model 
satisfies reflection positivity (Frohlich et a1 1980). 

A square-shaped region of A with centre at a lattice site r = (a ,  b )  E A and with 
vertices at ( a  *i, b *f) shall be called a square S ,  If, in a configuration [, a square 
has spins on its edges which are compatible with a ground state configuration, the 
square is said to be a ground state square. Otherwise, it is said to be a disordered 
square. Reflection positivity can then be used to show that the probability a set of L 
squares in a configuration are all disordered squares is less than gL, where g < 4 e-a'kT. 
Here a = H* - H,> 0, where Ho is the Hamiltonian restricted to a ground state square, 
and H, is the smallest value of the Hamiltonian restricted to a disordered square. 

If a disordered square and a ground state square share an edge, the edge is said 
to be a contour segment. Two contour segments are connected if they share a common 
end, and if they divide into two sets the four squares with which they share a vertex, 
such that one of the two sets contains only ground state squares. The latter stipulation 
prevents the branching of contours. 

Suppose S , ( [ )  is a ground state square and S , . ( [ )  is in a configuration which does 
not belong to the same ground state as S , ( [ ) .  Then either S , ( [ )  or S , , ( [ )  is surrounded 
by a closed contour y composed of L 2 4  segments. Since each contour segment is 
bordered by a disordered square, and since no disordered square is bordered by more 
than four contour segments, then y borders at least f L  disordered squares. Therefore, 
a contour of length L occurs with probability less than gL'4. 

The probability that a configuration about S , . ( ( )  is not in a ground state configur- 
ation compatable with the ground state square S,(.$) is less than 

h ( a / k T ) =  gL'4n(L)L,  
L = 4  

where r 1 ( L ) < ( $ ) 3 ~  is the maximum number of contours composed of L segments 
which can be generated beginning at a certain square. The factor L results since all 
such contours can be generated beginning at one of f L  squares connected in a straight 
line to r or to Z. 
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The probability P ( a / k T )  that S,(t) and S,,(t) are both ground state squares 
belonging to the same ground state is then bounded as 

P( / k T )  > f( (Y / k T )  = [ 1 - g ( (Y / kT)] [  1 - h ( a / k TI] .  (3) 

If To is the positive real solution of the equation f( a /  kT,) = f, then P( a /  k T )  > 4 if 
T < To, and an ordered phase with a two-fold degenerate equilibrium state exists in 
which most of the squares of A belong to the same ground state configuration. 

4. Discussion 

We have proved that the two-dimensional model has no transition when the ground 
state is composed of configurations in which each vertex has energy e,, and has an 
order-disorder transition when the ground state is composed of configurations in which 
each vertex has energy eb or each vertex has energy e, This accounts for the entire 
(I, If,  T = 0) plane as illustrated in figure 1. 

We have shown that the three-dimensional model has a transition when the ground 
state is composed of configurations in which each vertex has energy eg and has no 
transition when the ground state is composed of configurations with each vertex having 
enegy e, with I > 0. The remaining regions of the ( I ,  I', T = 0) plane have highly 
degenerate ground states, but we have not proved whether or not a phase transition 
occurs as the temperature is raised in these regions. 

Further research is planned for these models for the case of two components. Two 
subsequent phase transitions can then occur for some ranges of the interaction para- 
meters and chemical potentials. 
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